Generative Soundscape 0.2.1 – IR Comm & Circuit Prototyping

Brief

After a failed attempt of creating modules that would communicate through sound, I started looking into Infrared Communication.

This is a project that looks to experiment with Infrared Communication between various Modules. All modules come from the same design made in Eagle CAD. It is a through-hole board routed with The Other Mill. The overall board involves an embedded Arduino (ATMega328), 2 IR-Rx, 3 IR-Tx, a LED and a Push-Button.

Modules can transfer the code from any IR Remote and transfer it among their closest peers. 

Next Steps

Evaluate power consumption to figure how can they be powered through batteries.

 

 

 

Previous Iterations

ATTiny85 First Sketch

First successful try with ATTiny85, programmed through an Arduino UNO. Followed instructions found here

Solar Data Logger

Concept

What could be a way to log ITP's entrance and see the difference between the elevators' use and the stairs'? Through a solar powered DIY Arduino, we decided to visualize this data (and store it in a .csv table) in the screen between the elevators at ITP's entrance.

Development

After creating a DIY Arduino that could be powered through solar energy, by following Kina's tutorial we were able to set a basic solar rig that would charge the 3.7V and 1200 mA LiPo battery. We connected the solar panels in series and ended up with an open circuit voltage of 13V. Our current readings however, were of 4 mA.

We hooked the Arduino data to a Processing sketch that would overwrite the table data of a .csv file every second. All of the code can be found in this link.

M-Code Box

Concept

How can a fabricated object have an interactive life? The M-Code Box is a manifestation of words translated into a tangible morse code percussion. You can find the code here and what's needed to create one M-Code Box is an Arduino UNO, a Solenoid Motor (external power source, simple circuit) and a laptop with Processing.

Next Steps

There are two paths to take this project further. One is to have an interpreter component, recording its sounds and re-encoding them into words, like conversation triggers. The second is to start thinking on musical compositions by multiplying and varying this box in materials and dimensions.

 

 

Previous Iterations

This project came upon assembling two previous projects, the Box Fab exploration of live hinges and the Morse Code Translator that translates typed text into physical pulses.

GPS through Arduino and B_GSM Boards

For our GSM class final, partnered with Clara and Karthik we created a Geo-Fence hooked to an Arduino Uno.

If you're receiving garble when reading the incoming data from the GSM through Arduino, you should check whether both boards are working at the same baudrate (9600). To change the GSM board –Quectel 10M– baudrate through an FTDI adaptor and CoolTerm:

  1. AT+IPR? //Response (most likely) 115200
  2. AT+IPR = 9600 //Response OK
  3. —[Disconnect] change Baudrate to 9600 [Connect]—
  4. AT&W //Save settings. Response OK

Now plug the GSM Board to the chosen Software Serial PINS (10 and 11) and change the Fence center-point (homeLat and homeLon) the size –radius– of the fence in KMs (thresholdDistance) and the phone is going to be controlled from (phoneNumber), UPLOAD and run the SERIAL MONITOR. The code can be found in this Github Repo. Enjoy

The hardware used for this project was an Arduino UNO and one of Benedetta's custom GSM Boards with enabled GPS. This setup could work for potentially stand-alone purposes, however is advised to make sure beforehand that the power source has enough Watts to run the setup for the sought time.

Mind the Needle — Popping Balloons with Your Mind 0.2

 

Concept

Time's running out! Will your Concentration drive the Needle fast enough? Through the EEG consumer electronic Mindwave, visualize how your concentration level drives the speed of the Needle's arm and pops the balloon, maybe!

Second UI Exploration

Second UI Exploration

Development & UI

I designedcoded and fabricated the entire experience as an excuse to explore how people approach interfaces for the first time and imagine how things could or should be used.

The current UI focuses on the experience's challenge: 5 seconds to pop the balloon. The previous UI focused more on visually communicating the concentration signal (from now on called ATTENTION SIGNAL)

This is why there's prominence on the timer's dimension, location and color. The timer is bigger than the Attention signal and The Needle's digital representation. In addition this is why the timer is positioned at the left so people will read it first. Even though Attention signal is visually represented the concurrent question that emerged in NYC Media Lab's "The Future of Interfaces" and ITP's "Winter Show" was: what should I think of? 

Showcase

Insights

What drives the needle is the intensity of the concentration or overall electrical brain activity, which can be achieved through different ways, such as solving basic math problems for example –a recurrent successful on-site exercise–. More importantly, this question might be pointing to an underlying lack of feedback from the physical devise itself, a more revealing question would be: How could feedback in  BCIs be better? Another reflection upon this interactive experience was, what would happen if this playful challenge was addressed differently by moving The Needle only when exceeding a certain Attention threshold?

Previous Iterations

Mind the Needle Iteration 0.1

First Iteration of Mind the Needle, an exploration of emergent interfaces.

Mind the Needle is project exploring the commercially emergent user interfaces of EEG devices. After establishing the goal as popping a balloon with your mind –mapping the attention signal to a servo with an arm that holds a needle–, the project focused on better understanding how people approach these new interfaces and how can we start creating better practices around BCIs –Brain Computer Interfaces–. Mind the Needle has come to fruition after considering different scenarios. It focuses on finding the best way communicating progression through the attention signal. In the end we decided to only portray forward movement even though the attention signal varies constantly. In other words, the amount of Attention only affects the speed of the arm moving, not its actual position. Again, this is why the arm can only move forward, to better communicate progression in such intangible, rather ambiguous interactions –such as Brain Wave Signals–, which in the end mitigate frustration.

The first chosen layout was two arcs the same size, splitting the screen in two. The arc on the left is the user's Attention feedback and the other arc is the digital representation of the arm.

After the first draft, and a couple of feedback from people experimenting with just the Graphical User Interface, it was clear the need for the entire setup. However, after some first tryouts with the servo, there were really important insights around the GUI. Even though the visual language –Perceptual Aesthetic– used did convey progression and forwardness, the signs behind it remained unclear. People were still expecting the servo to move accordingly with the Attention signal. This is why in the final GUI this signal resembles a velocimeter.

UI Alternatives

Physical Prototype

Sidenote: To ensure the successful popping-strike at the end, the servo should make a quick slash in the end (if θ ≧ 180º) – {θ = 170º; delay(10); θ = 178;}

Morse Code Translator

Inspired by the "Hi Juno" project, I sought an easier way to use Morse Code. This is why I've created the Morse Code Translator, a program that translates your text input into "morsed" physical pulses. One idea to explore further could be thinking how would words express physically perceivable (sound, light, taste?, color?, Tº)

So far I've successfully made the serial communication and the Arduino's functionality. In other words, the idea works up to Arduino's embedded LED (pin 13). This is how a HI looks being translated into light.


Followup, making the solenoid work through morse coded pulses. You can find the Processing and Arduino code in this Github Repo.